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Efficient image segmentation method based on resolution
and region information fusion
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A generalized multiresolution likelihood ratio (GMLR), which can increase the distinction between different
signals by fusing their more features, is defined. Multiresolution representation of image characterizes in-
herent structure of image well, and the GMLR combines each resolution image features with corresponding
region features. A spatially variant mixture multiscale autoregressive prediction (SVMMARP) model is
proposed to estimate the parameters of GMLR based on maximum likelihood estimation via expectation
maximization (EM) algorithm. In the parameter estimation, bootstrap sampling technique is employed.
Experimental results demonstrate that the algorithm performs fairly well.
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Image segmentation plays a central role in low-level com-
puter vision. It is a pre-requisite for solving many other
computer vision problems, such as image classification,
content-based image retrieval, and object recognition.
Unsupervised image segmentation may be defined as the
task of dividing an image into several homogeneous re-
gions automatically based on some similarity measures.
An efficient approach to measuring the similarity of re-
gions is using probabilistic models. In recent years, most
of probabilistic models are based on mixture model and
Gibbs distribution[1−5]. For example, the multiresolu-
tion Gaussian autoregressive (MGA) model[5] takes into
account the correlation between adjacent levels of res-
olutions. It was assumed that the parameters of the
Gibbs distribution of the region process are known. Seg-
mentation is achieved there as the maximum posterior
marginals (MPM) estimate[6] rather than the maximum
a posteriori (MAP) estimate, since MPM estimate min-
imizes the probability of classification error. However,
it may only be approximately computed in a computa-
tionally expensive procedure similar to simulated anneal-
ing, and the MPM criterion does not consider the spatial
placement of errors when distinguishing among the qual-
ity of segmentations. In MGA model, spatial interaction
parameters are selected experimentally or prespecified.
And likelihood ratio test is also often used[7,8].

In above almost all statistical approaches, the image
model is frequently based on the assumption of statisti-
cally independent image sample with different marginal
probability distributions in each region. After the dis-
tributions are recovered from the mixed empirical signal
distribution over the image (see Refs. [9—13] to cite a
few), initial segmentation is performed by low-level pixel-
wise classification. Approximation and classification
of scalar data using a mixture of probability distribu-
tions are also widely used for data clustering in pattern
recognition[12,14,15]. These statistical approaches are to
maximize likelihood function based on statistically inde-
pendent image sample. In fact, these image samples are
statistically dependent.

In this paper, a generalized multiresolution likelihood

ratio (GMLR) is defined and GMLR test is given, which
not only fuses several predictable features (predictable
images) of image to increase distinction, but also it de-
cision (pixel classification) is based upon regions. The
statistically independence assumption of maximum like-
lihood estimation is satisfied better, and the algorithm
saves computation greatly by using bootstrap sampling
technique. The parameters of GMLR is estimated by
a spatially variant mixture multiscale autoregressive pre-
diction (SVMMARP) model[16]. Each image pixel is clas-
sified through GMLR test based on test window.

Considering different features of all kinds of signals
(including images) and fusing these features better, we
define GMLR. For simplicity and convenience of expla-
nation, we give GMLR for binary hypotheses as

λ(x1, · · · , xK) =

K∏
k=1

pk(xk |H1 )

K∏
k=1

pk(xk |H0 )
, (1)

where binary hypothesis H1 (H0) denotes two kinds of
signals; xk = (xk1, · · · , xkp) (k = 1, · · · , K) are p dimen-
sion vectors; pk(xk |Hi ), (k = 1, · · · , K; i = 0, 1) are
probability density functions (PDFs) and each of them
may be different types for describing different features of
signals, for example, Gaussian, Rayleigh, and so on. We
also can get GMLR test

K∏
k=1

p r|H0(xk |H0 )

K∏
k=1

p r|H1(xk |H1 )

H0

>
<
H1

K∏
k=1

(C00P0ck + C01P1βk)

K∏
k=1

(C10P0αk + C11P1rk)
, (2)

where C00, C10, C01, C11, P0, ck, P1, βk, αk, rk are some
constants to get. It is easy to notice that Eq. (1) degen-
erates to classical likelihood ratio when K = 1.

The above GMLR can fuse different and more features
of signals to consider together, and describe them with
appropriate PDF, so the GMLR can make more precise
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decision for classification and pattern recognition.
For clarity of outline and explanation, all of the theory

is binary hypotheses and all the G mentioned in the fol-
lowing is equal to 2. The detailed M -ary hypotheses and
test of GMLR also can be gotten, similar to Ref. [17].

The starting point for our method development is a
multiresolution sequence XK , XK−1, · · · , X0 of images,
where XK and X0 correspond to the coarsest and finest
resolution images, respectively. The detail can be found
in Ref. [18]. As an example, Fig. 1 illustrates a mul-
tiresolution sequence of three images, together with the
quadtree mapping. We use the notation X(s) to indicate
the pixel mapped to node s. The scale of node s is de-
noted by k(s).

For image segmentation application, the GMLR of im-
age is defined as

λ(xp1, · · · , xpK) =

K−3∏
k=0

pk(x∗
pk |H1 )

K−3∏
k=0

pk(x∗
pk |H0 )

, (3)

where x∗
pk (k = 0, · · · , K −3) are prediction of bootstrap

sample x∗
k. The K − 2 predictable images capture the

structure inherent in imagery well and accurately char-
acterize the evolution in scale of homogeneous regions.
By GMLR, all the structure inherent in imagery and the
evolution in scale are fused.

When all the parameters in Eq. (3) are estimated, we
classify each individual pixel based on a test window of
pixels surrounding it. The classification of the image
pixel Y0(s), denoted as C(s), can be obtained via the
rule

C(s) =
{

H1 if λ(Y0(s)) ≥ η
H0 if λ(Y0(s)) < η

, (4)

where the threshold value η can be determined by de-
tecting GMLR histogram.

Since Efron[19] introduced a very general re-sampling
procedure, called the bootstrap model, to estimate the

Fig. 1. Sequence of three multiresolution images mapped onto
quadtree.

distributions of statistics based on independent observa-
tions, many researches applied a bootstrap method in
pattern classification[20−22] and showed that it was a
powerful non-parametric technique to evaluate classifier’s
performance. Here we employ bootstrap sampling tech-
nique to get bootstrap sample and sample size.

The criterion is chosen so that the sample would be rep-
resentative only if each image grey level wj occurs more
than once into the bootstrap sample. Since the sample
size of each calss N ′

js can be considered as independent
Poisson random variables of parameter nπj (πj is prior
probability of each class), it must be subject to the con-
dition

∑G
j=1 nj = n, where nj is a realization of Nj. Let

us evaluate the probability Pn defined as

Pn = P (N1 > 0, · · · , Nj > 0, · · · , NL > 0)

=
∏G

j=1
(1 − e−nπj ). (5)

Then, the representative criterion requires Pn tending
to 1. The problem to solve is to determine the optimal
value n0 of the nsS from which our bootstrap sample
would be representative. Then, consider the function

p(x) =
G∏

j=1

(1 − e−πjx), x ∈ R, 0 < πj < 1, (6)

taking the derivation of log likelihood Eq. (6), and re-
placing x by n, we get

B(n) =
G∑

j=1

πje−πjn

1 − e−πjn
, (7)

where B(n) is minimal when P (x) is maximal. Hence,
B(n) could be regarded as the sampling characteristic
function of the observed image, in such a way that it
takes into account both the image pixel distribution and
the bootstrap sample size. We can obtain bootstrap sam-
ple as the description in Ref. [23].

The use of the bootstrap sampling technique in image
segmentation presents two advantages: 1) The choice of
independent pixel sample which would allow an estima-
tion of the statistical parameters of the image in the best
conditions of independence; 2) the reduction of redun-
dancy of information connected to the choice of a small
representative sample, allows a gain in a factor N/n in
times of calculation.

In order to estimate density function pk(· |Hi ) (k =
1, · · · , K; i = 0, 1) in Eq. (3) for image unsupervised seg-
mentation, we propose a SVMMARP model as[16]

Φ(x∗
pk)|θ1 · · · θG) =

G∑
g=1

ps
gφg

(
x∗

pk|θg
)
, (8)

where s is node at scale k; ps
g denote the probability of

the sth pixel belonging to the gth class at resolution k,

0 ≤ ps
g ≤ 1 and

G∑
g=1

ps
g = 1∀s; φg(x∗

pk |θg ) is probabil-

ity density function, and {φg (·|θg)} is a set of G den-
sity functions, each having its own vector of parameters
θg. Here we relate Eq. (3) and model Eq. (8) so: as a
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example, when classification number G = 2 and the res-
olution is k, φ1(x∗

pk

∣∣θ1 ) and φ2(x∗
pk

∣∣θ2 ) in Eq. (8) are
same as pk(x∗

pk |H0 ) and pk(x∗
pk |H1 ) in Eq. (3); the pa-

rameters at each resolution in Eq. (3) can be estimated
with a SVMMARP model. Here we consider φg (·|θg)
is the PDF of a Gaussian distribution. We choose x∗

pk

as a prediction of bootstrap sample x∗
k: firstly, we ob-

tain multiresolution sequence XK , XK−1, · · · , X0 of im-
age; secondly, we get bootstrap multiresolution sequence
of image x∗

0, · · · , x∗
K−1 from XK , XK−1, · · · , X0 as above;

then we get x∗
pk as

x∗
pk = ak,1x

∗
k+1 + ak,2x

∗
k+2 + · · · + ak,Rx∗

k+pk
+ bk. (9)

One purpose of choosing x∗
pk as an autoregressive (AR)

model is to filter and reduce the possible effect generated
by the presence of noise of images. The order of regres-
sion associated with modeling x∗

pk from its ancestors will
vary with the level k ∈ {0, 1, · · · , K} as defined by

pk =
{

K − k if K − R + 1 ≤ k < K
R if 0 ≤ k < K − R + 1 . (10)

Although regression order in Eq. (9) can be chosen by
AR model order’s criterion, here a maximum regression
order R = 3 was selected as it was found to achieve a good
trade-off between modeling accuracy and computational
efficiency. The regression coefficients for resolution k are
obtained by least squares minimization,

ak = arg
{

min
al

{∑
s

[x∗
k(s) − ak,1x

∗
k+1(s)

− · · · − ak,Rx∗
k+pk

(s) − bk]2
}}

, (11)

where ak = [ak,1, ak,2, · · · , ak,pk
, bk]′ is regression

coefficients, and x∗
k+i(s) indicates pixel of bootstrap mul-

tiresolution sequence image x∗
k+i(i = 0, · · · , pk).

The estimation of parameters is easily performed via
expectation maximization (EM) algorithm[24], and the
resulting iterations are given by

ws(i)

g =
ps(i)

g φg(x∗
pk(s))∑

{s|k(s)=k}
ps(i)

g φg(x∗
pk(s))

, (12)

ps(i+1)

g = ws(i)

g , (13)

u(i+1)
g =

∑
{s|k(s)=k}

ws(i)

g x∗
pk(s)

∑
{s|k(s)=k}

ws(i)
g

, (14)

[
σ2

g

](i+1)
=

∑
{s|k(s)=k}

ws(i)

g [x∗
pk(s) − u

(i+1)
g ]2

∑
{s|k(s)=k}

ws(i)
g

. (15)

The estimates of the parameters are obtained by iter-
ating above steps until convergence.

To verify the applicability of our approach to the seg-
mentation of image, two simulated images with two
different Gaussian distribution pixels and known class
boundaries were created (Figs. 2(a,e)). Table 1 is the
sampling characteristic function B(n) from the two sim-
ulated images, and it is obvious that the bootstrap sam-
ple size n0 = 32 × 32 at scale 0 is enough to have the
representation. We can estimate the parameters only
using the bootstrap sample not whole sample, so our
estimation is quite fast. We use the pixels in square
windows of 3 × 3 pixels to classify the central pixel, and
use a quadtree with K = 4 levels for the results pre-
sented here. The first simulated image has quite distinct
mean and standard deviation, and the global histogram
demonstrates a bimodal distribution (Fig. 2(b)). The
segmentation with mixture model gives an accurate seg-
mentation result, and our method gives a similar result
(Table 2). The second simulated image has little distinct
mean and standard deviation, and the global histogram
demonstrates a unimodal distribution (Fig. 2(f)). The
segmentation with mixture model gives a very poor seg-
mentation result (65.76%), and our method gives an
accurate result (98.02%) (Table 2), with all boundaries

Table 1. Sampling Characteristic Function B(n)
from the Two Simulated Images with

Same Prior Probability

n 60 120 180 1024

B(n) 9.3576 8.7565 8.1940 4.3775

×10−14 ×10−27 ×10−40 ×10−223

Fig. 2. (a,e) Simulated images; (b,f) histograms of the simulated images; (c,g) segmentation based on classical mixture model;
(d,h) segmentation based on our method.
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Table 2. Comparison of Segmentation Accuracy

Method First Simulated Image Precision Second Simulated Image Precision

Mixture Model Class Means �μ = (40, 70) 99.15% Class Means �μ = (60, 70) 65.76%

Our Method Standard Deviations �σ = (3, 10) 99.42% Standard Deviations �σ = (8, 10) 98.02%

Fig. 3. Segmentation results based on our approach (the first
row, and test window is 3×3) and mixture model (the second
row). Edges are superimposed on original images.

and regions accurately identified whatever mean and
standard deviation are. This demonstrates that our
model produces improved segmentation performance
(Figs. 2(c,d,g,h)).

In order to further test the method, we implemented it
and presented our results on some true scene images (Fig.
3) as above. After computation and estimation, the boot-
strap sample size n0 = 32×32 at scale 0 is enough to have
the representation for each image. Segmentation results
of these images using our method and mixture model
are presented in Fig. 3. The segmentation using mixture
model is very sensitive to noise and effects of lighting in
images. It is obvious that a smoother and more precise
segmentation results from our approach, and the method
is robust to noise and effects of lighting in images. The
analysis and experiments results are identical that the
approach using bootstrap technique saves time consider-
ably and the segmentation is precise. The reason for poor
results of mixture model is that mixture model does not
consider the dependence of neighboring pixels and spatial
and each resolution relationships, and uses only intensity
at finest multiresolution.

In conclusion, we define a GMLR for increasing the
distinction between different signals by efficiently fus-
ing more features. Based on GMLR test, we have
proposed an efficient unsupervised image segmentation
method, which combines bootstrap sampling technique
with SVMMARP model to estimate all the parameters
precisely and fast. The segmentation method takes ad-
vantage of resolution and region information of images,
so it is not only precise and easy to perform but also
robust to speckle. All the results support our analysis.
The PDF in GMLR may be different types when image
or image features are different. It is possible for wider
application.
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